Accepted Manuscript

The Autoimmune Basis of Alopecia Areata: A Comprehensive Review

PII: S1568-9972(14)00226-2
DOI: doi: 10.1016/j.autrev.2014.10.014
Reference: AUTREV 1632

To appear in: Autoimmunity Reviews

Received date: 2 October 2014
Accepted date: 5 October 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The Autoimmune Basis of Alopecia Areata: A Comprehensive Review

Naseeha Islam ¹, Patrick SC Leung¹, Arthur Huntley², M. Eric Gershwin¹

¹ Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis CA 95616.
² Department of Dermatology, University of California, Davis CA 95616.

To whom correspondence should be addressed:
M. Eric Gershwin, M.D., Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616; Telephone: 530-752-2884; Fax: 530-752-4669; Email: megershwin@ucdavis.edu

List of Abbreviations:
AA: Alopecia areata; BECs: biliary epithelial cells; CMV: cytomegalovirus; CRH: corticotropin-releasing hormone; DNBC: dinitrochlorobenzene; DPCP: dephnylcyclopropenone; HF: hair follicle; HLA: human leukocyte antigen; GWAS: genome wide association studies; SNP: single nucleotide polymorphism; HPA: hypothalamic-pituitary-adrenal; NK: natural killer, ORS: outer root sheath; PBC: primary biliary cirrhosis; SADBE: squaric acid dibutyl ester.
Abstract

Alopecia areata (AA) is a common, non-scarring dermatologic condition regularly distinguished by patches of hair loss on the scalp also manifesting in other, severe forms, including *alopecia totalis* (total loss of hair on the scalp) and *alopecia universalis* (complete loss of hair on the scalp and body). AA is a clinically heterogeneous disease with greatly varying yet typical symptoms, but the etiology for AA remains an enigma. However, clinical and experimental studies have pointed to autoimmune involvement, specifically regarding immune privilege sites of the hair follicles and the infiltration of CD4+ and CD8+ T cells and a predominant Th1 cytokine profile. Environmental insults, such as viral infections, trauma and genetic predisposition are also believed to contribute to the disease process. Multiple treatment options including the use of broad acting corticosteroids appear to be relative effective in mild cases, however the clinical management of more severe forms of AA is much more difficult. Recent studies suggest that intervention of the JAK pathway may have a potential therapeutic efficacy for AA.

Key words: alopecia areata, autoimmunity, corticosteroids, environment, HLA, hair follicle, immune privilege
1. Introduction

Autoimmunity can be the underlying cause of a broad spectrum of human disorders. As such, autoimmune diseases are difficult to diagnose and are often based on a multitude of clinical/laboratory markers [1, 2]. For example, patients with autoimmune diseases often have a positive family history for the same disease, or for other diseases known to have an autoimmune etiology. Immunologically, there are prominent mononuclear cells infiltrations in the affected organ or tissue, high titer of serum autoantibodies and the presence of preferential usage of certain HLA haplotypes. The deposition of antigen-antibody complexes in the affected organ or tissue is evident often leads to pathological damage; clinical symptoms are often improved with the use of immunosuppressive agents [3, 4]. Autoimmune diseases are conventionally treated by immunologists according to the type of organ involvement, and are classified as organ specific or systemic autoimmune diseases. Autoimmune diseases are common, affecting 8% of the American population [5]. Some autoimmune diseases are rare while others are highly common. Although autoimmune diseases are more common in females, some autoimmune disorders such as alopecia are more prevalent in males. In this article, we will discuss the natural history, epidemiology, etiology, contribution of the autoimmune responses and the clinical treatment of one of the most common autoimmune disorders, alopecia areata (AA).

2. Natural History/Clinical Features of AA

AA is extremely unpredictable and varies greatly from person to person, causing the disease to have a wide spectrum of features (Table 1). This extensive range of symptoms makes AA difficult to diagnose, and no regulated consistencies of disease analysis have been agreed upon.
The most common clinical presentation of AA is a circumscribed area of bald skin on the scalp, which is usually isolated from other patches, as seen in 90% of clinical diagnoses (Figure 1). There is typically no scarring or inflammation on the scalp itself. Remaining hairs take on an ‘exclamation point’ resemblance, consisting of short, thin hairs tapering to the end. These hair-loss characteristics, however, may also be found in other patterns, such as reticular thinning or diffusion. Such extensive patterns may include the distribution-ophiasis form usually with a band of hair loss around the scalp, or its complete opposite—a scalp-sisapho pattern that includes hair loss on the central part of the scalp [6]. Since AA is so dynamic, patches may be seen other areas of the body such as elbow, arms and thigh (Figure 2). In addition, the disease may involve facial hair, including eyelashes, eyebrows, and the beard area. As previously mentioned, alopecia totalis includes total hair loss on the scalp, and alopecia universalis is diagnosed with 100% loss of both scalp and body hair. Pitting of the nails is also common in AA patients, seen in anywhere between 10%-66% of cases [7]. AA is a systemic disease because, in addition to the hair follicles, it can also affect the nails and the eyes.

AA may also be responsible for the unfortunate sensation known as ‘overnight graying’, as it usually only causes darker hairs to fall out. Because alopecia is a non-scarring disease, hair regrowth is possible at diseased hair follicles. Non-pigmented hairs are usually spared by disease spreading, and grow back prior to normal pigmented hairs [8]. Less serious forms of AA can almost guarantee remission over a patient-dependent period of time, but even extreme cases such as alopecia universalis may be overcome at some point. Remission is fundamentally dependent on the prognostic factors presented by the individual. Poor prognosis that may foreshadow the prolonging of AA include early age of disease onset, a positive family history,
atopy, etc. [9]. Otherwise, spontaneous regrowth of hair in the isolated bald patches can be expected.

Immunohistologically, AA is characterized by the presence of lymphocytic infiltration, comprised of T-cells, adjoining the HF site [10, 11]. CD4+ T-cells constitute the majority of lymphocytes in the HF area, whereas CD8+ T-cells are commonly seen in the follicular epithelium. These immunological findings reflect the potential contribution of autoimmune responses to AA, as opposed to other dermatological conditions on the scalp [12]. Apart from AA, multiple other dermatological conditions with similar symptoms exist, often making it difficult to distinguish one disease from another [13, 14] (Table 1).

3. Epidemiology

AA is a relatively frequent disease with a prevalence of 0.1%-0.2% worldwide [15, 16]. Among different races and ethnic groups, the prevalence can range, from 0.9% to 6.9% [17]. Notably, individuals with Down’s syndrome seem to have a slightly higher incidence [12]. In the United States, one study reported that about 14.5 million patients suffer from AA, constituting about 2% of the national population [17], while another study suggested that only about 5.3 million in the U.S. are clinically affected [18]. Overall, AA seems to account for about 0.7%-3% of all patients in the United States [19], and about 2% in the United Kingdom [12] (Table 2).

The likelihood of diagnosis of AA during one’s lifetime is thought to be around 1.7%, regardless of demographical location, affecting both genders and all age groups [13, 15, 20, 21]. Although both men and women are affected, men seem to be more frequently associated with the more severe cases of alopecia than women [17]. The onset of AA is more likely early in life.
For example, various studies have reported that the peak incidence of AA occurs prior to 20 years of age, with about 60% of cases experiencing their first manifestation of hair loss during their late childhood/early adulthood [12, 17, 22]. Others studies report that only 44% of patients manifest disease onset before their 20s, but still agree that less than half of AA patients are diagnosed after age 40 [15]. In fact, study of a cohort of Asian AA patients reported that 85.5% of the AA patients had their first episode of AA before the age of 40 years [19, 23]. Of note, diagnoses of AA in prepubescent individuals seems to indicate poor prognosis [12, 22].

The epidemiology of AA also reflects the contribution of heredity factors. Of the 0.1% of the human population that developed AA, 10% to 42% reported a positive family history of AA, usually involving at least one first-degree relative [13, 17, 24]. The age of onset of AA also reflects familial history, with nearly 40% of cases having a positive familial history if diagnosed before age 30, but only about 7% if onset occurred later on in life [24]. Twin studies tend to show a concordance rate of about 55% [24], implicating the contribution of heredity factors in AA (Table 2).

4. Etiology

The etiology of AA is still unclear. Herein, we will examine the current literature with respect to genetic susceptibility, environmental factors, and the contribution of autoimmune responses within the hair follicle autoimmune privilege site in AA.

4.1 Genetic susceptibility
The genetic basis of AA is strongly supported by its observed heritability in first degree relatives, twin studies and genetic linkage analysis of AA families. In AA patients, first-degree relatives are associated with the disease in about 10% to 42% of cases. Among them, 7% of patients have at least one parent with AA, 3% have at least one sibling with the disease, and a minority of 2% have a child who also suffers from AA. In addition, there is a very high concordance in monozygotic twins [25]. A genome wide search for linkage of 20 families with AA consisting 102 affected and 118 unaffected individuals demonstrated the association of HLA with AA [26]. Of the HLA class II genes that are known to have associations with AA, the DQ3, DQ7, DR4, DR5, and DPW4 alleles are particularly involved. In addition to class II alleles, AA also includes the involvement of particular class I HLA alleles as well, albeit less frequently. For example, A1, B13, B18, B52-Cw*0704, B27, B40, B44, B62 are involved. Along with these HLA alleles that potentially contribute to the diagnosis of AA, certain regions of the human genome are associated with the more severe disease. DQ3, DR11, and DQ7 are suggested to predispose to alopecia totalis and alopecia universalis. Another notable genetic association is DRB1*04 in patients that suffer from AA, and a reduction in DRB1*03 alleles. These alleles are more or less specific to various ethnic identities, and therefore genetic associations depend on the patient’s particular geographical location and ethnic background [17, 20, 27, 28] (Table 3).

In a GWAS study of 1,054 AA cases and 3,278 controls, Petukhova et al [18] reported that eight genomic regions, including loci encoding genes in both innate and adaptive immunity are associated with AA. These include loci on chromosome 2q33.2 containing the CTLA4 gene, chromosome 4q27 containing IL-2/IL-21 genes, chromosome 6p21.32 containing the HLA segment, chromosome 6q25.1 containing the ULBP genes, chromosome 10p15.1 containing IL-
2RA (CD25), chromosome 12q13 containing Eos (IKZF4) and ERBB3 genes, chromosome 9q31.1 containing the syntaxin 17 gene and chromosome 11q13, upstream from peroxiredoxin 5 (PRDX5). A follow up study of this GWAS on five of these loci including IL-2/IL-21, ULBP, IKZF4/ERBB3, syntaxin 17, PRDX5 confirmed their validity, in addition IL-13 and KIAA0350 were also identified as susceptibility loci in AA [29]. Using a genome wide pooling approach, a SNP corresponding to an intronic region of the SPATA5 (spermatogenesis-associated protein 5) gene on chromosome 4 was identified as a potential susceptibility locus for AA [30]. More recently, additional loci within the IL-4 intron 3, promoter regions of Foxp3 and ICSOSLG genes have been found to be associated with AA [31, 32].

4.2 Environmental Factors

Clinical and experimental studies showed that environmental insults such as emotional/physical stressors, hormones and infections contribute to autoimmunity [33-36]. Stress hormones, in their efforts to maintain dermatological homeostasis in reaction to their environment, are known to affect AA [19]. These particular stressors in relation to diagnosed hair loss include exposure to ultraviolet light, natural and chemical bodily offenses, physical injury, and emotional distress. The human hair follicle (HF) appears to parallel the basic functionality of the hypothalamic-pituitary-adrenal (HPA) axis in the skin, incorporating the specific stress hormones that are accepted as prospective origins of alopecia [37]. Corticotropin-releasing hormone (CRH) is widely known to be a significant stress-induced component of the larger HPA axis [37]. Studies have shown that CRH and its receptors, CRH-R1, are expressed within the outer root sheath (ORS) of the HF, and the gene transcriptions of both hormone and receptor take place at the HF site [38]. Clinical observations document that in the affected
dermatological lesions of AA patients, there appeared a distinct association with CRH-2B (a subset of the CRH). This is in contrast to the much weaker signals of CRH-2B in both healthy subjects and the unaffected skin in AA [39]. The diseased areas, especially the epidermis and sebaceous glands of the HF, also have increased expression of CRH, adreno-corticotropic hormone, and α-melanocyte-stimulating hormone when compared to healthy individuals [39-41].

The association of cytomegalovirus (CMV) was initially proposed by Skinner based upon by the presence of CMV DNA sequences in skin biopsies of patients with AA [42]. However, this has been refuted [43]. Other viruses, including hepatitis B, hepatitis C, Epstein-Barr, and swine flu have been also been suggested to trigger AA [44-48]. Theories have also been put forward regarding seasonal associations, with evidence of increased disease relapses between the months of February and March. This may also be a result of the high multitudes of viruses in early spring, supporting the hypothesis that AA may be an effect of certain viral infections.

4.3 Contribution of autoimmune responses in AA
Autoimmunity generally arises from defects in immune tolerance, which results in the generation and proliferation of autoreactive T cells and autoantibodies [49-51]. We discuss primary biliary cirrhosis (PBC) because it is also an organ specific disease and has many analogies to the specificity of AA [52-60]. PBC is a chronic cholestatic liver disease histologically characterized by the immune mediated destruction of biliary epithelial cells (BECs) and small bile ducts with portal inflammatory cell infiltration. Damaged BECs lead to the development of fibrosis, cirrhosis and liver failure. Serologically, over 95% of patients with PBC also have high
titers of antimitochondrial antibodies [52, 56, 61]. Extensive efforts in defining the target mitochondrial autoantigens, T and B cell epitopes, the innate and adaptive immune responses, the immunobiology of the biliary epithelium, and the pathology of biliary cells destruction have greatly advanced the knowledge of the molecular mechanisms in the pathogenesis of PBC [54, 59, 61-68]. These have led to therapeutic designs in muse models and clinical trials in patients with PBC [69-72].

Autoimmunity in AA is strongly supported by clinical observations that patients with AA are often diagnosed with one or more other autoimmune disorders, including vitiligo, lupus erythematosus, myasthenia gravis, scleroderma, ulcerative colitis, Type I diabetes, thyroiditis, celiac disease, and rheumatoid arthritis [48, 73]. In addition, the effectiveness and efficacy of various immunosuppressive agents including cyclosporine and systemic corticosteroids; immunotherapy drugs, particularly contact synthesizers, such as dinitrochlorobenzene (DNCB), squaric acid dibutyl ester (SADBE), and 3,4-dihydroxy-2-naphthalenecarboxaldehyde (DPCP) [74] also suggest an autoimmune mechanism. Further, the human leukocyte antigens (HLA) has been reported to play a major role in the etiology of autoimmunity [75, 76]. Confirmation of this specific hypothesis in AA lies in the increased expression of specific HLAs in AA patients such as HLA-DR, HLA-A, HLA-B, and HLA-C, which are rarely seen in healthy individuals [11, 77] as well as the identification of a number of genetic risk factors within various innate and adaptive immunity gene loci [18].

The most widely accepted hypothesis for the effector mechanism of AA is the destruction of the HF, an immune privilege site. Within the HF itself, individuals without AA maintain immune
privilege in multiple ways, such as omitting MHC class 1 in the proximal outer root sheath (ORS). Conversely, patients identified with AA have a strong association with those same MHC class 1 alleles. Autoreactive cytotoxic T cells target specific autoantigens, especially melanogenesis-associated peptides expressed by anagen HFs that produce the melanin pigment [78, 79]. This is consistent with sparing of unpigmented hairs, and regrowth of initially white or grey hairs following onset of AA [80]. Additionally, it has been proposed that follicular melanocytes are also affected. The general exposure of these autoantigens in the follicles of diseased individuals then attracts a multitude of lymphocytes in the hair bulb area [21]. The repertoire of cells at the HF is comprised of natural killer (NK) cells, 20%-40% CD8+ T-cells, and 60%-80% CD4+ T-cells [81, 82]. Another associated cytokine, IFN-γ, has been observed to potentially upregulate MHC class 1 alleles, increasing the possibility of the destruction of the HF immune privilege [83]. Chemokines are involved with the development of autoimmune interactions [84-87], involving Th1 chemokines (specifically CXCL9/MIG and CXCL10/IP-10) that are more prominent in AA patients than healthy individuals [88]. Other cytokines that may potentially be associated are IL-1, IL-2, IL-4, and IL-10, along with macrophage migration inhibitory factor and tumor necrosis factor (TNF, including the B-cell activating factor subset) [16]. Apart from research of AA-involved cytokines and chemokines, studies in the chemotaxis of lymphocyte accumulations demonstrated distinct activity of CXCL10 in regards to histological outcomes of acute AA [89, 90].

With the growing interest of the NK cells in autoimmunity [91-93], its role in the pathogenesis of AA has also been investigated. NKG2D is expressed in these NK cells, although they also are components of various T-cells. These cells attack by recognizing certain glycoproteins and CMV
UL16 proteins, and MHC class I related proteins MICA/MICB [94]. In AA patients, the outer root sheath presents MICA proteins, leading NKG2D+ NK cells to target the HF [82]. The HF immune privilege of AA is maintained by being MHI class I negative, MICA negative with low expression of NKG2D NK cells. The breaking of tolerance in HF and subsequent change in cytokine/chemokine profiles leads to infiltration of lymphocytes [18, 19] (Figure 3).

The C3H/HeJ mouse is a spontaneous mouse model of AA, which manifests the clinical pathological features of human AA including infiltration of CD8+NKG2+ T cells around the epithelial layers of HFs [95, 96]. Interestingly, adoptive transfer of CD8+NKG2D+ cells from alopecia C3H/HeJ mice induces AA in healthy recipient mice whereas transfer of lymph node cells lacking NKG2D+ had no effect. C3H/HeJ mice also develop characteristics of AA when injected with IFN-γ, prompting MHC class I and II manifestations at HF. Global transcriptional profiling analyses of alopecia skin tissues from both human and C3H/HeJ mice identified three gene expression signatures including IFN response genes, cytotoxic T cell specific transcripts, and \(\gamma_c \) cytokines. Administration of blocking antibodies to either IL-2 or IL-15Rβ inhibit accumulation of CD8+NKG2D+ cells in T skin, abrogate MHC regulation and prevent AA in a skin graft model of AA. Interestingly, systemic administration of Janus kinase (JAK) inhibitors including ruxolitinib and tofacitinib were able to inhibit downstream effects of type 1 cytokines and eliminated the IFNγ signature and prevented the development of AA in the C3H/HeJ mice model of AA. Furthermore, topical administration of ruxolitinib and tofacitinib markedly reduced CD8+NKG2D+ cells in treated skin. More importantly, the clinical response of a small number of AA patients receiving 20mg ruxolitinib twice a day orally had near complete hair regrowth within three to five months of treatment [96].
5. Clinical Treatments

The onset of hair loss, especially in women and children, may cause psychological distress [22, 97]. Treatment options are limited and still being developed [12]. AA patients with only mild forms of the disease are normally advised to avoid unnecessary medication, as spontaneous regrowth is probable [22]. Broad-acting Intralesional corticosteroids are relatively effective (Table 4). However, the severe forms of alopecia are much harder to treat, and the only potential medications known to have efficacy with handling these diseases are allergic contact sensitizers through immunotherapy. This method of management works by inducing mild dermatitis on the affected skin, therefore averting the diseased HF lymphocytes from the scalp to the newly irritated area on the epidermis [98]. Unfortunately, the efficacy of this treatment has not always been recapitulated. Other treatments have also been suggested, including various formulations of corticosteroids, minoxidil, anthralin, topical immunotherapy, and sulfasalazine [74]. Biologics are actively sought as possible therapeutics in autoimmune diseases as in the case of primary biliary cirrhosis [69-71, 99]. Medications for AA are still being developed and researched, and hopefully will provide a suitable treatment for alopecia in the future.

6. Future Directions

AA is a relatively common dermatological and autoimmune disorder. Although AA is not life threatening, it can cause severe emotional and psychological distress. Data from epidemiological studies, clinical observations, immunological and pathological studies together with familial and molecular genetics studies indicate that autoimmune disorders are cumulative
results of immunological, environmental, and genetic factors [57, 100-103]. Continuous advances in dissecting underlying mechanisms will likely make inroads towards better treatments. At present, a multitude of questions remains to be answered in AA: how do genetic factors, such as HLA associations and MHC allele expressions, affect disease vulnerability or prognosis? What are the factors that regulate the HF immune privilege and the AA process? How do we apply understanding of the biology of HF to the pathogenesis of AA? How do AA autoantigens play a role in the pathogenesis of the disease? In order to answer these impending inquiries, new research strategies to further understand the etiology and pathogenesis of AA must be developed.
Take Home Messages

- Alopecia areata is a non-scarring hair loss disorder that has a relatively high prevalence with no discrimination as to age, gender, or ethnicity.
- Etiology for this disease may be attributed to genetic predispositions, environmental factors, or autoimmune conditions specific to the patient.
- The destruction of the hair follicle immune privilege site may contribute to the pathogenesis of the disease, resulting in a predominantly CD8+ T-cell infiltrate at location of the follicle.
- No current treatments have been widely accepted to have complete and satisfactory efficacy. Current clinical management of AA are primarily directed towards the symptoms and psychological distress.
Figure legends.

Figure 1. Clinical manifestation of alopecia in the scalp. Alopecia can presented in a wide spectrum characterized by focal patches of hair loss on the scalp to extensive involvement of the scalp (A, B, C, D) and total loss of hair over the entire scalp and involving the eyebrows (E). Alopecia is also seen in infant. In this age group, it is more common to see patchy alopecia resulting from tinea capitus (F).

Figure 2. Clinical manifestation of alopecia other parts such as in elbow (A), arms (B), beard area (C) and thigh (D).

Figure 3. Immunological cascade in the hair follicle in patients with alopecia areata.

External stressors and inflammatory cytokines/chemokines lead to strong association of MHC class I, infiltration of autoreactive CD8+ and CD4+ T cells targeting the melanogenesis associated peptides on HFs and CD8+NKG2D+cells within the immune privilege area of the hair follicle leads to immune mediated destruction of the hair bulb area and pathological development of AA.
Table 1- Clinical Features of AA and Related Dermatological Disorders.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Clinical Features</th>
<th>Classification</th>
<th>Affected Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopecia Areata (AA)</td>
<td>- One or more circular bald patches around the scalp</td>
<td>- Inflammatory</td>
<td>- 1.7% prevalence</td>
</tr>
<tr>
<td></td>
<td>- Presentation of ‘exclamation point’ hairs</td>
<td>- Non-scarring</td>
<td>- no male/female discrimination</td>
</tr>
<tr>
<td>Alopecia Totalis (AT)</td>
<td>- Loss of pigmented hairs, white hairs remaining on scalp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ophiasis or sisaiho patterns display AA variations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alopecia Universalis (AU)</td>
<td>- Complete loss of hair on the scalp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Most extreme form of AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Complete loss of scalp, facial, and body hair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Androgenetic Alopecia (AGA)</td>
<td>- Miniaturization, not complete loss of hairs</td>
<td>- Non-inflammatory</td>
<td>- Predominant in Caucasian men</td>
</tr>
<tr>
<td></td>
<td>- Bitemporal/vertex pattern of balding</td>
<td>- Non-scarring</td>
<td>- 50% prevalence by age 50</td>
</tr>
<tr>
<td>Female Pattern Hair Loss (FPHL)</td>
<td>- Miniaturization similar to AGA</td>
<td>- Non-inflammatory</td>
<td>- Predominant in women</td>
</tr>
<tr>
<td></td>
<td>- Widespread thinning in the central area of the scalp</td>
<td>- Non-scarring</td>
<td>- 20%-30% prevalence by age 50</td>
</tr>
<tr>
<td>Telogen Effluvium (TE)</td>
<td>- Uniform hair loss across the scalp, not just the crown/discrete patches</td>
<td>- Non-inflammatory</td>
<td>- More prevalent in women</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Non-scarring</td>
<td>- Triggers include</td>
</tr>
<tr>
<td>-generalized hair shedding, club hairs from hair-pull test</td>
<td>physical/emotional stress, childbirth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-rapid disease onset following distinct trigger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- rapid disease onset following distinct trigger
- generalized hair shedding, club hairs from hair-pull test
- physical/emotional stress, childbirth
Table 2 - Epidemiology of Alopecia Areata

<table>
<thead>
<tr>
<th>Disease Prevalence</th>
<th>Disease Incidence</th>
<th>Age</th>
<th>Family History</th>
<th>Miscellaneous</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher prevalence with Downs syndrome</td>
<td>1.7% worldwide</td>
<td>60% before age 20</td>
<td>20% of patients</td>
<td>More prevalent with Downs syndrome</td>
<td>[104, 105]</td>
</tr>
<tr>
<td>0.1%-0.2% worldwide</td>
<td>1.7% worldwide</td>
<td>60% before age 20; Peak: 30-59 years</td>
<td>8.7%-20% of patients</td>
<td>Dermatology clinics: 2%-3% (US/UK); 3.8% (China); 0.7% (India)</td>
<td>[23, 106-111]</td>
</tr>
<tr>
<td>0.1%-0.2% worldwide</td>
<td>-</td>
<td>44% before age 20; 30% after age 40</td>
<td>-</td>
<td>0.7%-3.8% of dermatology clinics</td>
<td>[108, 112, 113]</td>
</tr>
<tr>
<td>0.1% worldwide; 2% of US; 8.8% with Downs Syndrome</td>
<td>1.7% worldwide</td>
<td>60% before age 20; 70% between ages 10-25</td>
<td>10%-42% of patients</td>
<td>3%-42% heritability of disease; Severity distribution 63% men, 36% women</td>
<td>[7, 108, 114-118]</td>
</tr>
<tr>
<td>1%-2% worldwide</td>
<td>-</td>
<td>-</td>
<td>55% twin concordance; 5%-6% recurrence in</td>
<td>-</td>
<td>[108, 119, 120]</td>
</tr>
<tr>
<td>Percentage Worldwide</td>
<td>Children of Patients</td>
<td>Characteristics</td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 million in US</td>
<td>1.7% worldwide</td>
<td>-</td>
<td>-</td>
<td>[108, 121]</td>
<td></td>
</tr>
<tr>
<td>1%-2% worldwide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>[108]</td>
<td></td>
</tr>
<tr>
<td>0%-1% worldwide</td>
<td>1.7% worldwide</td>
<td>30%-48% before age 20</td>
<td>20%-40% of patients</td>
<td>4.5%-30% are more severe cases</td>
<td>[48, 108, 122, 123]</td>
</tr>
<tr>
<td>1%-2% worldwide</td>
<td>-</td>
<td>60% before age 20</td>
<td>10%-42% of patients</td>
<td>20%-30% of patients have other autoimmune diseases</td>
<td>[7, 124-127]</td>
</tr>
<tr>
<td>-</td>
<td>1.7% worldwide</td>
<td>85.5% before age 40 in Asian population</td>
<td>-</td>
<td>0.7%-3.7% of dermatology clinics</td>
<td>[23, 106, 107]</td>
</tr>
</tbody>
</table>
Table 3- HLA Gene Associations with Alopecia by Nationality

<table>
<thead>
<tr>
<th>Geographic Location</th>
<th>HLA Class</th>
<th>Genetic Alleles</th>
<th>Associated Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>America [17]</td>
<td>HLA Class I</td>
<td>B40</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>China [128]</td>
<td>HLA Class I</td>
<td>B52-Cw*0704</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Denmark [17, 129]</td>
<td>HLA Class II</td>
<td>DQ7 (DQB1*0301)</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Denmark [17, 129]</td>
<td>HLA Class II</td>
<td>DR4</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Denmark [17, 129]</td>
<td>HLA Class II</td>
<td>DPW4</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Finland [130]</td>
<td>HLA Class I</td>
<td>B44 (B12)</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Israel [131]</td>
<td>HLA Class I</td>
<td>B18</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Italy [17]</td>
<td>HLA Class II</td>
<td>DR4</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Russia [132]</td>
<td>HLA Class I</td>
<td>B13</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Russia [133]</td>
<td>HLA Class I</td>
<td>B27</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Turkey [17, 133]</td>
<td>HLA Class I</td>
<td>A1</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>Turkey [17, 133]</td>
<td>HLA Class I</td>
<td>B62, CW3</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>United Kingdom [17]</td>
<td>HLA Class II</td>
<td>DR4</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>United States [17, 134]</td>
<td>HLA Class II</td>
<td>DQ3 (DQB1*03)</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>United States [17, 134]</td>
<td>HLA Class II</td>
<td>DQ3 (DQB1*03)</td>
<td>Alopecia Totalis/Universalis</td>
</tr>
<tr>
<td>United States [17]</td>
<td>HLA Class II</td>
<td>DQ7 (DQR1*0301)</td>
<td>Alopecia Totalis/Universalis</td>
</tr>
<tr>
<td>United States [17]</td>
<td>HLA Class II</td>
<td>DR4</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>United States [17]</td>
<td>HLA Class II</td>
<td>DR5 (DR11)</td>
<td>Alopecia Areata</td>
</tr>
<tr>
<td>United States [17]</td>
<td>HLA Class II</td>
<td>DR11 (DRB1*1104)</td>
<td>Alopecia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totalis/Universalis</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 4- Treatments for Alopecia Areata

<table>
<thead>
<tr>
<th>Name of Treatment</th>
<th>Dosage Recommendations</th>
<th>Efficacy</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical Corticosteroids</td>
<td>- fluocinolone acetonide 0.2% cream; betamethasone deprolotion dipironate 0.05% lotion; betamethasone valerate 0.1% foam; clobetasol 0.05% foam; OR 0.1% halcinonide - apply on affected area and 1 cm beyond circumference of bald patch</td>
<td>- 28.5%-61% achievement of regrowth - 37.5% of patients did suffer relapses</td>
<td>- usually primary stage of treatment due to convenient application - recommended for children diagnosed with AA - potential side effects include atrophy, folliculitis, or telangiectasia</td>
</tr>
<tr>
<td>Intralesional Corticosteroids</td>
<td>- triamcinolone acetonide is best option - inject with 30-gauge needle 5 in. long - repeat at different sites, 1 cm apart - 10 mg/ml for scalp, 2.5 mg/ml for face - max. 20 mg/ml per injection (every 4-6 weeks)</td>
<td>- success rates 60%-75% - disease remission should be seen in 4 weeks</td>
<td>- potential side effects include skin atrophy, hypopigmentation, telangiectasia, heightened cataract/intra-ocular pressure, or anaphylaxis (rarely)</td>
</tr>
<tr>
<td>Systemic Corticosteroids</td>
<td>- 0.5 mg/kg/day of oral dexamethasone - 40 mg/month intramuscular triamcinolone</td>
<td>- 26.6%-36.6% success for dexamethasone</td>
<td>- extended periods of use should be avoided - effective for AA patches, but not as beneficial</td>
</tr>
<tr>
<td>Treatment</td>
<td>Description</td>
<td>Success Rates</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Acetonide</td>
<td>Prednisolone 200 mg/week for 3 months, 5 mg betamethasone twice a week/6 months</td>
<td>-60% success prednisolone, -75% success betamethasone</td>
<td>For more extensive forms of the disease (AU, etc.)</td>
</tr>
<tr>
<td>Minoxidil</td>
<td>Applied twice a day, 2% or 5% solution (2% less effective), combination with corticosteroids promotes efficacy, foam form less likely to stimulate side effects</td>
<td>Effective in extensive AA (but not AT or AU)</td>
<td>Potential side effects include dermatitis or pruritus, studies show that 3% female consumers grew undesired facial hair</td>
</tr>
<tr>
<td>Anthralin</td>
<td>Short-contact cream, 0.5%-1%, applied for 20-30 min. daily, 2-3 weeks</td>
<td>Efficacy not well established</td>
<td>May be good choice for children with AA, potential side effects include folliculitis, regional lymphadenopathy, or irritation</td>
</tr>
<tr>
<td>Topical Immunotherapy/contact sensitizers</td>
<td>Dinitrochlorobenzene (DNCB), diphenyl-cyclo-propenone (DPCP) OR squaric acid dibutyl ester (SADBE), 2% solution is advised, apply onto 4 cm² of affected scalp, left on for 1-2 days</td>
<td>36% acceptable regrowth with DNCB, 50%-60% success with DPCP/SADBE</td>
<td>Physical contact with allergen should be avoided by using gloves and aprons, no data on safety during pregnancy, allergic reactions may occur, due to the mechanisms of the contact sensitizers</td>
</tr>
<tr>
<td>Sulfasalizine</td>
<td>-0.5g twice daily/month, then 1 g twice daily/month, then 1.5 g twice daily/3 months</td>
<td>-moderate disease remission in 23%-25.6% of cases</td>
<td>-potential side effects may include gastrointestinal distress, fever, rash, hepatotoxicity, headache, or hematological abnormalities</td>
</tr>
</tbody>
</table>
References

Figure 1
Figure 2
Figure 3